Solving the Mysteries of Short-Legged Neandertals (Science Daily)

ScienceDaily (Oct. 19, 2011) — Original article here
While most studies have concluded that a cold climate led to the short lower legs typical of Neandertals, researchers at Johns Hopkins have found that lower leg lengths shorter than the typical modern human’s let them move more efficiently over the mountainous terrain where they lived. The findings reveal a broader trend relating shorter lower leg length to mountainous environments that may help explain the limb proportions of many different animals.

Sheep. The researchers decided to study different types of bovids -- a group of mammals including gazelles, antelopes, goats and sheep -- since these animals live in warm and cold environments on both flat and hilly terrain. (Credit: © rparys / Fotolia)

Their research was published online in the American Journal of Physical Anthropology and will appear in print in the November issue.

“Studies looking at limb length have always concluded that a shorter limb, including in Neandertals, leads to less efficiency of movement, because they had to take more steps to go a given distance,” says lead author Ryan Higgins, graduate student in the Johns Hopkins Center of Functional Anatomy and Evolution. “But the other studies only looked at flat land. Our study suggests that the Neandertals’ steps were not less efficient than modern humans in the sloped, mountainous environment where they lived.”

Neandertals, who lived from 40,000 to 200,000 years ago in Europe and Western Asia, mostly during very cold periods, had a smaller stature and shorter lower leg lengths than modern humans. Because mammals in cold areas tend to be more compact, with a smaller surface area, scientists have normally concluded that it was the region’s temperature that led to their truncated limbs compared to those of modern humans, who lived in a warmer environment overall.

However, Higgins’ group adds a twist to this story. Using a mathematical model relating leg proportions to angle of ascent on hills, he has calculated that Neandertals on a sloped terrain would have held an advantage while moving compared to their long-legged cousins, the modern humans. Because the area Neandertals inhabited was more mountainous than where modern humans tended to live, the researchers say that this assessment paints a more accurate picture of the Neandertals’ efficiency of movement as compared to humans. “Their short lower leg lengths actually made the Neandertals more adept at walking on hills,” explains Higgins.

But the group didn’t stop there. “In our field, if you want to prove an adaptation to the environment, like mountains leading to shorter leg lengths, you can’t just look at one species; you have to look at many species in the same situation, and see the same pattern happening over and over again,” says Higgins. “We needed to look at other animals with similar leg construction that existed in both flat and mountainous areas, as Neandertals and humans did, to see if animals tended to have shorter lower leg length in the mountains.”

The researchers decided to study different types of bovids–a group of mammals including gazelles, antelopes, goats and sheep–since these animals live in warm and cold environments on both flat and hilly terrain. The group took data from the literature on bovid leg bones and found that they fit the pattern: mountainous bovids, such as sheep and mountain goats, overall had shorter lower leg bones than their relatives on flat land, such as antelopes and gazelles, even when they lived in the same climates.

Investigating closely related bovids brought this trend into even sharper relief. Most gazelles live on flat land, and the one mountainous gazelle species examined had relatively shorter lower legs, despite sharing the same climate. Also, among caprids (goats and sheep), which mostly live on mountains, the one flat land member of the group exhibited relatively longer lower legs than all the others.

“Biologists have Bergman’s and Allen’s Rules, which predict reduced surface area to body size and shorter limbs in colder environments,” says Higgins. “Our evidence suggests that we can also predict certain limb configurations based on topography. We believe adding the topic of terrain to ongoing discussions about limb proportions will allows us to better refine our understanding of how living species adapt to their environments. This improved understanding will help us better interpret the characteristics of many fossil species, not just Neandertals.”

Funding for this research was provided by the Johns Hopkins Center of Functional Anatomy and Evolution.

This study was completed by Ryan Higgins and Christopher B. Ruff, Ph.D., also of the Johns Hopkins Center of Functional Anatomy and Evolution.

Neanderthal burial ground suggests they practiced funeral rituals

NewKerala.com – original article here
Washington, Apr 21 : The discovery of a possible Neanderthal burial ground has suggested that they practiced funeral rituals and possessed symbolic thought long before modern humans.

According to a Quaternary International paper, evidence for a likely 50,000-year-old Neanderthal burial ground that includes the remains of at least three individuals has been unearthed in Spain.
The skeletons found in apparent burial poses at the site Sima de las Palomas, in Murcia, Southeast Spain, may be the first known Neanderthal burial ground of Mediterranean Europe. The remains of six to seven other Neanderthals, including an infant and two juveniles, as well as associated tools and food, have also been excavated. The deceased appear to have been intentionally buried, with each Neanderthal””s arms folded such that the hands were close to the head, suggesting that it held meaning.

“We cannot say much (about the skeletons) except that we surmise the site was regarded as somehow relevant in regard to the remains of deceased Neanderthals,” Discovery News quoted lead author Michael Walker as saying.

“Their tools and food remains, not to mention signs of fires having been lit, which we have excavated indicate they visited the site more than once,” he said.

Walker, a professor in the Department of Zoology and Physical Anthropology at the University of Murcia and his colleagues, have been working at the site for some time. So far they have found buried articulated skeletons for a young adult female, a juvenile or child, and an adult — possibly male — Neanderthal.

“We cannot say whether these three individuals were related, though it is likely,” he said, explaining that DNA has been denatured due to high ambient temperatures. “Surely the child was related to one of the others, though,” he explained.

The Neanderthals were found covered together with rocks burying their remains. The researchers believe it””s likely that other Neanderthals intentionally placed the rocks over the bodies from a height. While it cannot be ruled out that an accident killed the three individuals, the scientists believe that wasn””t the case. “I think there is just enough evidence at Sima de las Palomas to think that three articulated skeletons are unlikely to have been the result of a single random accident to three cadavers that somehow escaped the ravages of hyenas and leopards, which were present at the site,” Walker said.

Erik Trinkaus, a professor of physical anthropology at Washington University in St. Louis, is one of the world’s leading experts on Neanderthals. He said that it is certainly possible that the Neanderthals at Sima de las Palomas were buried. He said a few dozen documented Neanderthal burials from Western Europe, Eastern Europe and Southwest Asia have already been documented.

Trinkaus added that the Neanderthal remains from Spain will “provide us with our first glimpse of overall Neanderthal body form in Southern Europe, as well as additional specimens for a number of aspects of Neanderthal biology”.

ANI